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INSTABILITY IN THE CRITICAL CASE OF A PAIR
OF PURE IMAGINARY ROOTS FOR A CLASS
OF SYSTEMS WITH AFTEREFFECTY
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The stability of motion of a system described by Volterra integrodifferential equations is investigated in the critical case
when the characteristic equation has a pair of pure imaginary roots. Conditions for instability, analogous to the well-known
conditions from the theory of differential equations [1}, are derived. (A similar result was established previously in [2] for integro-
differential equations of simpler structure with integral kernels of exponential-polynomial type.) For the proof, several
manipulations are used to simplify the original equation and, in particular, to reduce the linearized equation to the form of a
differential equation with constant diagonal matrix. (An analogous approach was used to analyse instability for Volterra
integrodifferential equations in the critical case of one zero root in [3, 4].) As an example, the sign of the Lyapunov constant in
the problem of the rotational motion of a rigid body with viscoelastic supports is calculated. © 1998 Elsevier Science Ltd.
All rights reserved.

1. We will consider a system with aftereffect, whose perturbed motion in the neighbourhood of the motion
being investigated is described by the equation

t
%:Ax+j K({t-s)x(s)ds+ F(x,y,t), xeR", yeR™ (1.1)
0

where A4 is a constant # X n matrix, and the # x n matrix K(t) € C is defined on the set I = {t € R: ¢t = 0}
and satisfies the inequality

KNIl < C exp(-Br), C, P =const>0 (1.2)

The vector-valued function F(x, ¥, t): By(x,y) xI — R" in (1.1), where By(x,y) = {x € R",y € R™
flxll <Ry, 1Y Il < Ry} for given R; > 0 (i = 1, 2), is assumed to be holomorphic in x and §; moreover,
it is assumed that the coefficients of its power series expansion are either continuous and tend
exponentially to constants as t — +oo, or are constants. The functional ¥ has the form

y=[ K(t-5)¢(x(s),5)ds (1.3)
0

o(x,ty:B(x)xI = R*, B/(x)={xeR": llxll<R}

where ¢(x, 7) is a vector-valued function, holomorphic in x, with expansion coefficients of the same type
as F(x,y, ), and K(t) € C is an m x k matrix given for ¢ € I such that

T AOIES (:'exp(—xt), C, x=const>0 (1.4)

We will assume that the functions F and ¢ are such that, after x has been replaced by ex (€ = const),
this substitution also including Eq. (1.3), the expansion of F in a series of powers of € begins with terms
of not less than the second order.

The Cauchy problem can be considered for Eq. (1.1)-(1.4) and the Lyapunov stability of the trivial
solution can be investigated with respect to disturbance of the initial conditions x(0).

In what follows we shall use the following notation.

If a function y(¢) satisfies an inequality of the following type for ¢t € I
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Ily )= cexp(yt), c=const>0

then we write y(t) € el(y) that is, y(r) belongs to the class e;(y).
Similarly, if w;(z, 5) is a function defined on the setJ = {(, s) € R% 0 <s <t < +oo}, satisfying the
inequality

hy (e, I cexp[y(t —s)]

then we write y;(z, 5) € e,(Y).
Let K*() be the Laplace transform of the matrix K(¢). By (1.2), the characteristic equation for (1.1)

det(AE, —A—-K (A))=0 1.5
exists for Re A = —f and the determinant in (1.5) is analytic for Re A > —B. We shall assume that Eq.
(1. 5) has a finite number of roots in the half-plane Re A > —B, say A; (j = , N), numbered in order
of increasing real parts, with Re ;<0 (j=1,...,N-2) and 7~N—1 = zm, )w —m, ® > 0. Suppose
thaty; (! = 1,..., n) are the characterlstlc exponents of the solutions of the linearized equation (1.1)
such that

_B<XISA42$ e an_z <xn_|=7\.n=0 (1.6)
and that all the roots of the characteristic equation corresponding to A; (I = 1, . . ., n) are simple and
Re A; <A (s =1,...,N—n); some of them may be complex conjugates: A, = p; + iy, Agp1 = M5 —
i (s = 1,...,p). Then the resolvent of the linearized equation (1.1) may be expressed as [5]

N
R(tYy= Y pexp(At)+R(t), tel, p =const (1.7)
I=N-n+l

where the n x n matrix Ry(f) € C' is such that R,(f) € e,(—P,), where B; > 0 is a constant satisfying the
inequality -p < —B; < A;. We shall assume that for some B’ = B,

dR(1)/dt € e,(—B) (1.8)

2. We will now perform a series of transformations that will enable us to single out critical variables.
We introduce a fundamental solution matrix X’(¢) of the linearized equation (1.1) and suppose it to be
normal in the Lyapunov’s sense [1]. Ifx{(#) (! = 1, . . ., n) are fundamental solutions (columns of X’(t)),
then the characteristic exponents satisfy the equalities x(x(#)) = A, (j=1,...,n-2) and

x,_;()=2(acoswt - bsinwe) + x7, ()
x, ()= 2(bcoswt + asinwt) + x,(t) @1

where a and b are constant vectors and x(x’(t)) < A,_, kK = n — 1, n. Define a function

n-2
d(t) = exp[— Yy kjt]det X't (2.2)

j=l
which, as follows from the structure of the fundamental solutions, may be expressed as d(f) = d, +
dy(t), where dy = const and d,(¢) € e;(A,,_2). Let us assume that for ¢ e 7 this function satisfies the condition

ldii=d’ >0, d’ =const (23)

Let us consider the basis conjugate to xj(¢), say yj(t), whose vectors are the rows of a matrix Y’(¢) =
(v5(2)) such that Y’(£)X’(t) = E,. Define a fundamental solution matrix X(¢ - 5s) (X(0) = E,) of the
linearized equation (1.1) with lower limit of integration s, with whose help the general solution of Eq.
(1.1) may be expressed in terms of the Cauchy integral formula [6].

It follows from the structure of the general solution (1.7) and from (2.3) that the linearized equation
(1.1) is regular in Lyapunov’s sense. Consequently, we have the equalities y(y{#t)) = -4 (= 1,...,n)and
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¥y (1) = exp(=Ait)(cy + yj (1))
y,’,-,j(t)=8,~(b)cosmt+8j(a)sin(ot+y"_,j(t) (2.4)

’

Ya ()= —Sj(a)coscot + Sj (b)sin ot + Vi (1)

where c; are (real or complex) constants, §/(a), 8(b) are real constants and y}(¢) € e;(ar), o < 0
k,j=1,...,nl=1,...,n-2). We make the change of variables

n
Y=X, W = ZI yiOx;, 1=1..,n-2, k=n-ln (2.5)
J:
where the coefficients are continuous and bounded for ¢ € 7; provided that

8‘(’) = yr’l-—ln-l (‘))’,'m (’) - y:l~ln (t)yrlm-l (t)|=
=10y +8,(NI= 83 >0, ;.8 =const, §(Hee () (x<0) (2.6)

this transformation is of the Lyapunov type. Changing to complex-conjugate variables

Wpot = Yn-1 +iyn’ Wy = Yn-i -iyn (27)

and using (2.6), we deduce the following formulae for the transformation inverse to (2.5)

n-2
X=X W,;g(t)exr!(iimt)wk+.2l Y;(y;, s=n-ln
’=

k=n-1,n

We =W +WPM, Y=Y +1rPan WP, ¥ =const

W), Y(,})(t) € e (—y) for some y > 0.
The plus sign is taken for k = r and the minus fork =n -1,

3. We now transform the subsystem for the non-critical variable y = col(y,, . . . , y,-;). To that end
we introduce a Lyapunov-normal fundamental solution matrix X(¢) by deleting the (n — 1)th and nth
rows and columns. In the same way, we derive from the matrix X(¢ — s) a fundamental matrix X,(¢ — s)
(X>(0) = E,_,) for this subsystem.

Let A5 = diag(ANp41, - - - » Avez), Where Re My,.y = 4 (( = 1,...,n-2). Let us assume that forte I’

[det(X3)exp(—AsND)= 85 >0, &) =const 3.1

Note that the determinant in this inequality tends exponentially to a constant as ¢t — +oo,
We introduce a matrix Y;(¢) such that Y3(£)X7(t) = E,_, and make the substitution

z=exp(AjDY;()y (3.2)

with coefficients that are bounded and continuous for ¢ € I and tend to constants as ¢ — +oo, After the
transformations (2.5), (2.7) and (3.2) have been applied we obtain, using Lemma 1 of [3], equations
analogous to (2.2) and (3.4) of [2]; of these equations, we will write here only those for the critical
variables

n

!
-‘Zv—t"=,f Y (Pny () Li0,; (2, ))F/(2(s5), w(s), 3(s), s)ds +
0

j=t

n
+3 (YO 2y ONF(2,w,5,8), k=n-1n; w=col(w,_,,w,) (3.3)
j=1

where y (f) is the integral (1.3) transformed to the variables z, w and the functions F; are the components
of the vector F in (1.1), transformed to the variables z, w. The upper sign in (3.3) corresponds to
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k=n-1.InEqgs (3.3)

a n
(pkj(t,s)=5(l_zl y,’d(t)x,j(t—s)), k=n-1,n (B4

Equations (3.3), as well as the equations for the non-critical variables, corresponding to the complex-
conjugate elements of the matrix Aj, are complex conjugate. By (2.4), we have

Y1) E iy, ()= c; exp(tiot) + 5)} (1), c¢j=const, yiee(=y), y>0

It can also be shown, using (3.4) and the relationship between y;;(#) and x;(¢) and performing the
necessary calculations, that

P (1,5) +iQ,;(1,5) = explion)®; (1 - 5)+ D (1,5), @;(1) € ¢(~Y) (3.5)
where 5j(t, s) is the sum of terms of the form @,(t)@,(t, s), with @.(t) € e,(—Y1), 92(2, 5) € ex(—Y,) for

Y1 > 0, Y2 > 0.
All the coefficients £(¢) of terms in (3.3) and in the subsystem for the non-critical variables that

depend onlyon z; (! = 1, ..., n — 2) and are outside the integral sign have the structure &(f) =
& + &1(2), where &g - const, &; € e;(—Y) for some vy > 0, and all the integral kernels belong to the class
ex(-).

The scheme of the subsequent discussion is more or less a repetition of the proof presented in [2].
In particular, integration by parts and a substitution of the type

u=z+Ug,(w,)+ Y wh w j N™OD (1 ywk! ()Wl (s)u(s)ds + U3, . (W, 1)
sm(0,1)=1

where k, /, kl and /1 are non-negative integers, m(0, 1) is the set of these numbers, sm(0, 1) is their sum,
Usm(w, s) is a polynomial in w, of degree 4m, with continuous bounded coefficients, and U, ., (w, t)
is a finite sum of integral terms (of the indicated type) of degree greater than two, linear in u, containing
multiple integrals with continuous kernels of the class e,(—y) for y > 0; all terms depending only on the
variables w,_; and w,, up to some order 4m inclusive may be successively excluded from the equation
for the non-critical variables, as can integral terms that are linear in a non-critical variable of order up
to and including 2m + 1. We write the equation, thus transformed, as

duldt=Au+U(u,w,t)

where the integral operator U has the properties described above.
After a series of simplifying transformations, enabling us to reduce terms of order up to 2m + 1 on
the right of Egs (3.3) to an autonomous form, these equations become

dw} /dt= 2 C(")rz"w~ T+ @ (u, w',t) 3.6)
k=1

w’ =col(w,_;,w,), C](.") =const, r’=w,_w,

where w’ is a new critical variable, ¢;(u, w/, t) is an integral operator such that the expansion in
powers of € for ¢;(eu, en’, ) begins w1th terms of the second order in € and all terms of order up to
and including 2m + 1 vanish when u = 0. Note that Eqs (3.6) withj = n — 1 and j = n are complex
conjugates.

On the basis of (3.6), we set up the real equation

m
Z: Y "2+ RPw )+ RO D w 1), gy = const 3.7

k=1
where v = colgul, ... 3 Vyp) and v’ = col(v,_1, v,) are vectors of real variables correspondmg to u and
w’, and R®"*? are real integral operators such that R(3 (81) £V, t) is a polynomial in € of degree 2m

+ 2 that begins with third-order terms, such that R®(0, v’, t) = 0, and the expansion of R@**3)(gv,
€V, ¢) in powers of € begins with terms of order 2m + 3.
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Suppose thatg; = ... = gy, = 0 and gy41 > 0in Eq. (3.7).
As in [2, 3], one can now use Chetayev’s instability theorem [7, 8], which is true for integrodifferential
equations of the type considered, to prove that the unperturbed motion is unstable.

Theorem. Suppose that the characteristic equation (1.5) for Eq. (1.1)—(1.4) has a finite number of
roots in the half-plane Re A > -B,sayAj (j =1,...,N),where Re A} <0(j=1,...,N~-2)and
Ny = i®, My = —i; suppose moreover that all the roots A{ (s = 1,. .., n) corresponding to characteristic
exponents A, (1.6) are simple and Re Aj< A, (! = 1, ..., N —n). Let conditions (1.8), (2.3), (2.6) and
(3.1) hold.

Then, if the first non-zero constant in Eq. (3.7) is gom+1 > 0, the trivial solution of Eq. (1.1)—-(1.4) is
unstable.

4. We will now investigate the stability of the equilibrium position in an example analogous to that considered
in [9]. The rigid body in this example is a shaft 4B whose mass distribution is the same in each cross-section. Rigidly
fastened to the ends of the shaft are two viscoelastic bodies OA and BO; (each is a shaft of unit length and negligibly
small mass), whose ends are fixed. The entire system can rotate about the axis QO;, which is assumed to be
undeformable. Let & be the angle of rotation of the shaft, r the distance of the centre of mass of the shaft from
the axis OO0, mg its mass and J its moment of inertia about the axis OO;. This rigid body is moving in a uniform
gravitational field under the action of the viscoelastic forces exerted on it at its ends A and B by the bodies OA
and BO,. The torque M of these forces is assumed to have the same form as in [10, 11], on the assumption that
the stress—strain relationship is given by a Volterra-Fréchet series of which only the first terms affecting the conditions
derived below are retained, that is

t
M=-k8+ I K’(t-5)0(s)ds + j ji Rt —u,t=v ,t —w)O ()0 ) w)dudv dw 4.1
0 000

(k is the modulus of elasticity for twisting and K'(¢) and 12(:1, ty, t;) are relaxation kernels). Let us assume
[11, p. 606] that

K{—wt-v,i-w)=K"(t—-w)K"(t-v )K" (t-w)

We will investigate the stability in rotational motion of the equilibrium position of the rigid body when its centre
of mass is in its upper position, & = 0. The equations of perturbed motion may be written as

t
-‘1‘3=ﬁl, ﬁ=-m+j K, (t-5)0(s)ds —m D> +37° +0(9°) (4.2)
dt dt 0
k—mgr _kw 0] _mgr o b
K= T K= 7 Ky, = . m1—3”, y—(j; K5 (1~ 5)0(s)ds

Suppose that the kernel K"(¢) satisfies an estimate of the form (1.4). Assume that the characteristic equation
for (4.2) has two pure imaginary roots +iw, the remaining roots having negative real parts and satisfying the condi-
tions of the theorem.

After suitable calculations, we see that the sign of the constant g; is determined by that of the quantity

2 .
g =Re |:-m|+( | Kz(t)e"’"er | Kz(r)e"‘““dt][(al—ibx)j ¢z(s)ds+5';]] (43)
0 0 0

where a, and b, are the components of the vectors a and b defined in (2.1), and D,(s) = (P(zl)(s) + itb(;z)(s) is the
function occurring in representation (3.5).

If g5 > O, our theorem implies that the equilibrium is unstable.

If the kernel K(¢) has an exponential-polynomial structure, the function ®,(f) can be evaluated explicitly, using
the well-known general solution of the linearized equation. Thus suppose that K;(¢) has the form

K, (1) = @ exp(—Y;t) + Qs exp(=72f)
where the constants Q; and y; (i = 1, 2) satisfy the inequalities
0 >0, 0;<0, O =IQ,), ¥,>¥,>0 (4.4)

Under these conditions, the characteristic equation
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o= +k-2 L _j

has a pair of pure imaginary roots i, where

+
ol =K-xo, )Co='Q'L'—Q—2

and two roots A and A’y with negative real parts
, 1 1 2 &
12= -'2-(Y1 +72)% Z(Yl +¥2)°=Y1¥2~Xo
provided that the following relation exists between the parameters of the system

K=71¥2+%5' (X§ - QY2 - Qom1)
Suppose, for simplicity, that ] and A, are real numbers. Then the solution of the linearized equation of perturbed
motion may be written in the form
8(0) = (af +03) 7 (o —ioy Jexp(inn)(iwd(0)+ 9, (0) +
+(0y +ioty Yexp(—iot)(—id(0) + 9 (0)]+ X exp(Ap(AL8(0)+0,(0))/ ®'(AL) (4.5)
k=1,2

where the constants o, and o are determined by the following relation (the prime indicates a derivative of ®)
D'(iw) = o +ioy
Using (4.5), we can calculate the functions ®°(¢) (k = 1, 2), which can be shown to satisfy the identity
@M (1) + o (=0

Then the sign of g5 (4.3) will be the same as that of the quantity g’ defined by

gé': -%T K2 (S)Sln((m)ds (4'6)
0

& =2[ (5P (5)+a @ (s)ds+a™!
o
To compute the constant ¢,, we have the following formula

2.2
m=1li- 3 S0
ol k2 AM®(AD)

Suppose, for example, in accordance with (4.4), that v, = 3y, 2 = %, @01 = 2%, Q2 = —Y5, where 7, > 0. In
that case, ¢y = 12yy/(13V7) > 0, and the instability condition implies that the integral in the formula (4.6) for g3
is negative.
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